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Theoretical considerations and a simulation study concerning description and analysis of
new autopilot structures and issues relating to conversion of guidance commands into de-
flections of a complex system of control surfaces aimed at minimizing the miss distance
value are presented in this paper. Due to nonlinear and nonstationary nature of the phe-
nomena associated with the guidance process, a significant role is assigned to simulation
studies. A comparative analysis has been made of the guidance processes of three models of
a dual-control missile, which differ in terms of formulae implemented in the control command
converters.
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1. Introduction

Recent years have seen a significant increase in the possibilities offered by the air attack, both in
terms of the impact on the enemy and the tactics used. Common use is made of jamming, anti-
-missile maneuvers, long-distance guided glide bombs and anti-radiation missiles. The intensive
development of aircraft as well as maneuvering and aeroballistic missiles, and the increasingly
common use of unmanned aircraft systems on today’s battlefields, demand that ways are found to
counteract these threats. Areas in which progress has been made include solutions for producing
the lift force and methods of controlling anti-aircraft missiles. In particular, this concerns the
design of dual-control missiles which have sets of aerodynamic fins both in front of and behind
the missile center of mass. The aim of these solutions is to extend maneuvering possibilities of
the missiles, thereby to increase the effectiveness of control during the terminal guidance phase.

Dual-control missiles were subjected to scientific analysis in the early 1990s (Hull et al., 1990;
Ochi et al., 1991). Research in this area has been carried out by centers in, for example, Israel
(Idan et al., 2007; Shima and Golan, 2006, 2007), the United States (Schroeder, 2001; Shtessel
and Tournes, 2009), China (Hua et al., 2016; Yan and Ji, 2012), Japan (Ochi, 2003) and Spain
(Ibarrondo and Sanz-Aránguez, 2016). These studies have largely concentrated on the optimum
distribution of signals between control channels with attention being given both to problems of
minimizing the miss distance and to general strategies for controlling and guiding missiles to
aerial targets.

The high maneuverability of modern airstrike weapons enables them to react effectively to
fire, including through anti-missile maneuvers. This situation is particularly disadvantageous
during the terminal guidance phase, as it requires a very rapid reaction on the part of the
missile, involving significant rotations of its airframe. This disturbs working conditions of the
seeker, increasing dynamic errors of the coordinate determination system (Grycewicz et al., 1984;
Siouris, 2004; Yanushevsky, 2007; Gapiński and Krzysztofik, 2014). These errors are incorporated
into the missile control commands, leading to increased miss distances and, thus, to reduced
effectiveness of fire against the target. The minimization of miss distances is especially critical
against ballistic missiles, which are generally destroyed by a direct hit, using the kinetic energy of
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the guided missile. In these situations, the miss distance cannot exceed geometrical dimensions
of the target.
It, therefore, becomes necessary to seek for solutions enabling stabilization of the operating

conditions of the on-board seeker. Every change in the angle of attack and the use of aerodynamic
control moment to produce rotation of the airframe achieved through deflection of the fins brings
about transitional processes in the system that have an adverse effect on the operating conditions
of the seeker installed in the nose section.
The use of a dual-control aerodynamic scheme is interesting in view of the increased technical

control possibilities offered and, thus, the extended possibilities available for the guidance process
itself. For example, the sets of fins in the control planes may deflect in the same direction (“divert
mode”) or in opposite directions (“opposite mode”) – that is, the angles of deflection of the
control surfaces located in front of and behind the center of mass of the missile airframe may
have either the same or different signs.
This study focuses on issues related to improving the operating conditions of the seeker

installed on an anti-aircraft missile. Specifically, the terminal phase of the guidance of the missile
to an aerial target – the phase of particular relevance to effective combating of modern highly
maneuverable air attacks.
The structure of the paper is as follows. In Section 2, a mathematical model is given for

the dynamics of dual-control missile flight. The models of the elements making up the guidance
loop are presented in Section 3. In Sections 4 and 5, formulae are proposed for the conversion of
control commands, with selected simulation results. Conclusions and closing remarks constitute
the final Section.

2. Dual-control missile dynamics model

We consider a cruciform, roll-stabilized missile with dual controls located in front of and behind
the center of mass (Fig. 1).

Fig. 1. Dual-control missile configuration

The motion of the missile is considered independently in the control planes. Selected questions
will be addressed in the case of motion in the pitch plane.
The dynamics of the missile in the pitch plane is described by the following system of

equations

ẋ(t) = Ax(t) +Bq(t) y(t) = Cx(t) (2.1)

where x is a state vector

x ∈ R
5×1 : x =

[
θ ω ϑ δC δT

]T
(2.2)
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y is a vector of output signals

y ∈ R
2×1 : y =

[
ω ϑ

]T
(2.3)

and q is a control vector

q ∈ R
5×1 : q =

[
0 0 0 δcomC δcomT

]T
(2.4)

The symbols in equations (2.2)-(2.4) have the following meanings: θ is the pitch angle of the
missile velocity vector; ω is the angular rate of the missile airframe; ϑ is the pitch angle of the
missile airframe; δcomC and δC are the commanded and actual deflections of the canards; δ

com
T and

δT are the commanded and actual deflections of the tail fins.
The matrices A, B and C are defined as follows

A ∈ R
5×5 : A =





−A1 0 A1 AC5 AT5
A3 −A4 −A3 −AC2 −AT2
0 1 0 0 0
0 0 0 −1/τC 0
0 0 0 0 −1/τT





B ∈ R
5×5 : B =





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1/τC 0
0 0 0 0 1/τT





C ∈ N
2×5 : C =

[
0 1 0 0 0
0 0 1 0 0

]

(2.5)

where τC and τT are the time constants for the canards and tail fin servos. The coefficients of
the matrix A take the following forms

A1 =
ρV

2m
f1(M,α)

AC2 =
ρV 2

2I
fC2 (M, δC) AT2 =

ρV 2

2I
fT2 (M, δT )

A3 =
ρV 2

2I
f3(M,α) A4 =

ρV

2I
f4(M,ω)

AC5 =
ρV

2m
f5(M, δC) AT5 =

ρV

2m
f5(M, δT )

(2.6)

where V = |V| is the module of the missile velocity vector, ρ is the air density, and α ≡ ϑ − θ
is the airframe angle of attack. Nonlinear functions fi(·), i ∈ {1, . . . , 5} describe the missile
aerodynamics. These depend on, among others, geometric parameters of the airframe, Mach’s
number M , and values of the variables α, ω, δC , and δT . They have a complex form whose
derivation lies outside the scope of this work. The polynomial approximations f̂i(·), i ∈ {1, . . . , 5}
are taken for M > 1.15, and the following are assumed to hold

f1(M,α) ≈ SB f̂1

fC2 (M, δC) ≈ SC lC f̂
C
2 fT2 (M, δT ) ≈ ST lT f̂

T
2

f3(M,α) ≈ SBlB f̂3 f4(M,ω) ≈ SBl
2
B f̂4

f5(M, δC ) ≈ SC f̂5 f5(M, δT ) ≈ ST f̂5

(2.7)
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where SB , SC , ST and lB, lC , lT are the characteristic surfaces and linear characteristic di-
mensions of the airframe, canards, and tail fins, respectively. The system of equations (2.1) is
supplemented with the kinematic equation

aav = V θ̇ (2.8)

where aav is the available acceleration relative to the normal of the missile velocity vector, and
V is the module of that vector.

The gravitational force acting on the missile during its flight is treated as an external signal
the compensation of which is made in the numerical calculations by means of the adjustment

θ̇G = −
g

V
cos θ (2.9)

where g = 9.81m/s2 is the gravitational acceleration.

Fig. 2. Block diagram of the dual-control missile stabilization system in the pitch plane

A system for stabilization of the static and dynamic characteristics of the airframe is applied
in the form of feedback loops, based on the angular rate and linear acceleration (Fig. 2). Con-
sequently, a vector-matrix equation is obtained to describe motion of the dual-control missile in
the pitch plane, taking account the stabilization system

ẋ = (I+BL)−1(A−BK)x+ (I+BL)−1Bu (2.10)

where I is the identity matrix, and u is the control command vector

u ∈ R
5×1 : u =

[
03×1

uκ

]

∧ uκ =

[
κC
κT

]

(2.11)

where, in turn, κC is the command applied to the canards, κT is the command applied to the
tail fins, and K and L are matrices in the feedback paths

K,L ∈ R
5×5 : K =





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 KC 0 0 0
0 KT 0 0 0




L =





0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
LC 0 0 0 0
LT 0 0 0 0




(2.12)

where KC , KT , LC and LT are the gains of component control signals for the canards and the
tail fins.
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3. Homing loop model

The system under consideration is a homing system based on a proportional navigation me-
thod in which control signals are dependent on parameters of the line of sight (Siouris, 2004;
Yanushevsky, 2007; Zarchan, 2012)

areq = nVC λ̇ (3.1)

where areq is the required acceleration, n is the navigational constant, VC is the closing velocity
and λ̇ is the angular rate of the line of sight.
A simplified block diagram of the missile homing system is shown in Fig. 3. The loop elements

consist of the target, a seeker with a system for determining the target coordinates (TCD), an
autopilot system (AP) and actuators.

Fig. 3. Block diagram of the missile homing loop

The aerial target is modelled as a mass point whose motion is described by the vector E

E ∈ R
1×4 : E =

[
xE yE θE VE

]
(3.2)

where xE and yE are the coordinates of the instantaneous position of the target, θE is the pitch
angle of the target velocity vector, and VE is the module of the target velocity vector. The
changes in the target velocity and the pitch angle are defined by

V̇E = a
L
E θ̇E =

1

VE
aE (3.3)

where aLE is the longitudinal acceleration and aE is the lateral acceleration in the pitch plane.
The changes in the accelerations aLE and aE are approximated by the first-order dynamics

ȧLE =
κLE − a

L
E

τE
ȧE =

κE − aE
τE

(3.4)

where κLE and κE are the commanded accelerations and τE is the time constant. The commanded
accelerations are subject to the following restrictions

|κLE | ¬ κ
L
E |κE | ¬ κE (3.5)

The angle of the line of sight is given by

λ = arctan
yE − y

xE − x
(3.6)

where the coordinates x and y describe the instantaneous position of the missile.
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The seeker supplies data to the coordinate determination system. A significant problem
relating to the homing process is the determination of the current angular rate of the line of
sight as determination of the position of the target is hampered by the fact that the motion of
the missile airframe affects the operation of the coordinate determination system. The signal
returned by the seeker contains information about the angular rate of the line of sight distorted
by the inertia of the system (Grycewicz et al., 1984) via a signal proportional to the angular
acceleration of the missile airframe, and by generally understood measurement errors

sλm(s) =
kS
τSs+ 1

[sλ(s) + s∆λ(s) + s2ξϑ(s)] (3.7)

where ξ is the acceleration gain factor, kS and τS are the gain and the time constant of the
seeker drives, and ∆λ denotes the sum of the error signals occurring in the measuring path.
The sector of observation of the seeker’s antenna is subject to the following restriction

|ϑ − λm| ¬ ζ (3.8)

4. Control command equations

Under the classical approach, the following control equation may be applied for a missile guided
using a method of proportional navigation (Grycewicz et al., 1984)

κ = η1λ̇+ η2λ̈ (4.1)

where κ is the control command, η1 is a navigation function dependent on time and mass-
-geometrical characteristics of the missile, and η2 is a variable related to compensation of the
errors resulting from the airframe dynamics. Expression (4.1) is insufficient to perform the
guidance process of a dual-control missile, as it does not take into account the additional possi-
bilities offered by the dual-control system – in particular, it does not contain a rule for selecting
the control mode.
During the guidance of a missile to the target, it is desirable that

ω = θ̇ = nλ̇ (4.2)

namely, that the angular rate of the airframe should be close to the angular rate of the missile
velocity vector and should not depend on the dynamics of the missile itself. This requirement is
the basis for the formulation of the quantity index

J = E

{ tf∫

0

(ω − θ̇)2 dt

}

(4.3)

where E{·} is the mean operator and tf is the final time. The value of the expression in (4.3)
depends on the system ability to reduce the effect of components related to the dynamics of
the missile airframe. This value will be smaller when the transitional processes occurring during
guidance are shorter and less oscillatory. Figure 4a shows graphs of the angular rates of a dual-
-control missile airframe normalized to the final value, as they respond to step deflections of the
fins (in the divert or opposite mode). The diagram shows the divert mode to be a more desirable
control method in terms of the course of the process. A fundamental drawback, however, is that
the accelerations available in the divert mode are many times smaller than those available in
the opposite mode (Fig. 4b).
Based on Eq. (4.1) and the conditions described above, two forms of the conversion equations

have been formulated for the mathematical model of the dual-control missile given by Eq. (2.10).
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Fig. 4. Normalized angular rates (a) and normal accelerations (b) of the missile airframe

The condition for switching the control commands has been taken to be the result of comparison
of the current values for the required and available acceleration.

The rule in the first case is formulated as follows: if the absolute value of the required accele-
ration in the control plane is greater than the absolute value of the available acceleration in the
divert mode, then the switch to the opposite mode takes place. The equation with acceleration-
-based determination of control commands for the control plane takes the form

uκ =

[
κC
κT

]

=

[
η1λ̇m + η2λ̈m

κT

]

κT =





−η1λ̇m − η2λ̈m for |areq| > |a

D
av |

η1λ̇m + η2λ̈m for |areq| ¬ |a
D
av |

(4.4)

where aDav is the available acceleration in the divert mode.

In the second case, an extended acceleration-based conversion model is used, where the values
of required acceleration are compared with the values of available acceleration in the divert and
canard-control mode. If the absolute value of the required acceleration in the considered control
plane is greater than the absolute value of the available acceleration in the divert mode, the
switch to canard control takes place. If the absolute value of the required acceleration also
exceeds the absolute value of the available acceleration in the canard-control mode, the switch
to the opposite mode takes place. In the extended acceleration-based conversion model, Eq.
(4.4)2 for the control command κT is replaced by

κT =






−η1λ̇m − η2λ̈m for |areq| > |a
C
av |

0 for |aDav| < |areq| ¬ |a
C
av |

η1λ̇
m
ε + η2λ̈

m
ε for |areq| ¬ |a

D
av |

(4.5)

where aCav is the available acceleration in the canard-control mode.

Equations (4.4) and (4.5) indicate that in the present dual-control system, the canard fins
are assigned a primary role. The tail fins regulate the resulting aerodynamic control moment
depending on both the relative position of the missile and the target, and on the current state
of the variables in the homing loop.
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It is assumed that the control commands are overlaid with white noise with Gaussian distri-
bution modelling the fluctuating interference caused by the noise from on-board devices and the
environment. The resulting signal is limited by the saturation function

sat(κ) =






1 for κ > 1

κ for |κ| ¬ 1

−1 for κ < −1

(4.6)

where κ is the control command in the general meaning.

5. Simulation of the guidance process

The modelled missile guidance loop consists of systems with highly differentiated dynamics
and event rates, including the rate of electromagnetic wave propagation. For these reasons,
different methods of numerical integration have been used in forming approximate differential
equations for elements of the guidance loop. For the elements subject to a negative feedback loop,
Euler’s approximations are generally sufficient, given an appropriate choice of the integration
step size. Similarly, central-difference formulas computed in an open-loop system have been used
to approximate the motion of the target. The proposed command formulas were examined for
the terminal guidance phase. A comparison of guidance processes was made for the following
missile models: a) dual-control missile No. 1 with the command formula described by equations
(4.4); b) dual-control missile No. 2 with the command formula described by equations (4.4)1 and
(4.5); c) dual-control missile No. 3 with tail-fin control, with the following conversion formula

uκ =

[
κC
κT

]

=

[
0

−η1λ̇m − η2λ̈m

]

(5.1)

The following values were used as quantity indices of the guidance process: a) the value of the
expression in (4.3); and b) the miss distance d defined as

d =
√
(xE − x)2 + (yE − y)2 (5.2)

at the instant at which the closing velocity VC changed the sign.
It is assumed that the missiles have no thrust during the endgame. The following values of

variables have been used in the simulation: m = 100 kg, I = 35 kg·m2, SB = 0.67m
2, SC = ST =

0.06m2, lB = 0.2m, lC = lT = 1.36m, τC = τT = 0.01 s, kS = 1, τS = 0.01 s, ζ = 1.3 rad,
τE = 0.1 s.

Scenario 1

The missiles are aimed at a non-maneuvering aerial target (Fig. 5). At the time t = 0, the
target is located at the pitch angle θE = 0

◦ and is moving at VE = 400m/s at a height of 1 500m
and a distance of 3 000m from the initial position of the missiles. At t = 0, the missiles have a
height of 1 000m, the pitch angle of the airframe is ϑ = 5◦, the pitch angle of the velocity vector
is θ = 5◦, and the initial velocity is V = 1000m/s. The time of the simulation is tsim = 2.5 s.
In the simulation, missiles 1-3 intercept the target at the time t1 = t2 = t3 = 2.23 s. The

mean values of the quantity indices from 100 sample runs of the scenario are given in Table 1,
where

d =
1

100

100∑

i=1

di J =
1

100

100∑

i=1

Ji
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Fig. 5. Missile and target trajectories

Table 1. Guidance results

d J

Missile No. 1 0.0054 5.18

Missile No. 2 0.0013 3.49

Missile No. 3 0.0385 9.44

Fig. 6. Control mode comparison for a sample run (OM – opposite mode, DM – divert mode,
CCM – canard-control mode, TCM – tail-fin control mode)

Figures 6 and 7 illustrate selected results from one of the simulation tests.

The analysis of the guidance process indicates that more favorable working conditions for
the seeker are attained in the case of missiles No. 1 and No. 2 than in the case of missile No. 3:
the angular rates of the line of sight stabilize at around 0.5 deg/s (Fig. 7a), while the missile
airframes in the divert mode move at angles of attack of approximately zero (Fig. 7b). In the
case of missile No. 2, the conditions for transition to the divert mode are attained 0.4 s earlier
(Fig. 6) using an indirect control mode (canard-control mode). This leads to the most favorable
stabilization index value for seeker working conditions, and the smallest average miss distance
among the studied missiles (cf. Table 1).
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Fig. 7. (a) Angular rates of the line of sight, (b) angles of attack of the missile airframes

Scenario 2

The missiles are aimed at a fast aerial target maneuvering with longitudinal acceleration
aLE = ±1 g and lateral acceleration aE = ±10 g (Fig. 8). At the time t = 0, the target is located
at the pitch angle θE = 5

◦ and is moving at VE = 350m/s at a height of 800m and a distance of
3 000m from the initial position of the missiles. At t = 0, the missiles are at a height of 1 000m,
the pitch angle of the airframe is ϑ = 0◦, the pitch angle of the velocity vector is θ = 0◦, and
the initial velocity is V = 1000m/s. The time of the simulation is tsim = 2.5 s.

Fig. 8. Missile and target trajectories

The missiles intercept the target at the following times: t1 = 2.34 s for missile No. 1,
t2 = 2.33 s for missile No. 2, and t3 = 2.32 s for missile No. 3. The mean values of the quantity
indices from 100 sample runs of the scenario are given in Table 2. Figures 9 and 10 illustrate
selected results from one of the simulation tests.
In the case of missile No. 2, the conditions for transition to the divert mode are attained most

rapidly using the indirect control mode (Fig. 9). In the case of both missile No. 1 and No. 2, it is
necessary to switch to other control modes later in the guidance process: the opposite mode in
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Table 2. Guidance results

d J

Missile No. 1 0.2663 67.58

Missile No. 2 0.1054 61.09

Missile No. 3 2.8760 73.73

Fig. 9. Control mode comparison for a sample run (OM – opposite mode, DM – divert mode,
CCM – canard-control mode, TCM – tail-fin control mode)

Fig. 10. (a) Angular rates of the line of sight, (b) angles of attack of the missile airframes

the case of missile No. 1, and the canard-control mode in the case of missile No. 2. However, the
conditions for transitioning to the divert mode are still satisfied immediately before the strike
on the target. This makes it possible to reduce the angular rate of the line of sight (Fig. 10a)
leading to a reduction in the miss distance (cf. Table 2). The opposite situation occurs in the
case of missile No. 3 in the tail-fin control mode: as the distance to the target decreases, the
angular rate of the line of sight continues to increase, reaching a value above 300 deg/s at the
moment of strike. The average miss distance of missile No. 3 is larger by an order of magnitude
than that of missiles No. 1 and No. 2.
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6. Conclusions

The proposed control method provides a wide range of possibilities for reacting to changing
conditions of an aerial combat situation.
If the target is such that the missile is not required to perform significant maneuvering, it

can be guided in the divert mode with angles of attack close to zero. The use of the divert mode
enables the angular rates of the missile airframe to be matched with the angular rates of the
missile velocity vector, which is preceded by a short and gentle transitional process. Advantages
of this mode of control include its favorable effect on the operating conditions of the sensor
elements and a reduction in energy losses resulting from oscillations of the airframe. However,
the limited ability to achieve normal accelerations means that guidance using the divert mode
exclusively may prove insufficient to complete the task.
When the required values of normal acceleration are such that the divert mode is insufficient,

the guidance can be performed using opposing deflections of the fins. This mode of control exhi-
bits all characteristic features of control using traditional configurations (tail fins and canards)
with the difference being that it enables higher aerodynamic control moments to be attained,
which may be advantageous when the aerial situation requires a maneuver involving significant
acceleration. The basic drawback is that the achievement of these accelerations is associated
with sudden large reactions of the missile airframe, which disrupts the operating conditions of
the seeker, increasing the percentage error in the control signals.

An advantage is found to result from the use of extended acceleration-based conversion with
an additional control mode – canard control – as an intermediate mode between the divert and
opposite modes. This enables larger accelerations to be achieved than in the case of the divert
mode but, at the same time, generates lower values of the angular rates and angles of attack
than the opposite mode, with resultant tactical advantages.
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